量子計算是一種遵循量子力學規(guī)律調(diào)控量子信息單元進行計算的新型計算模式。對照于傳統(tǒng)的通用計算機,其理論模型是通用圖靈機;通用的量子計算機,其理論模型是用量子力學規(guī)律重新詮釋的通用圖靈機。從可計算的問題來看,量子計算機只能解決傳統(tǒng)計算機所能解決的問題,但是從計算的效率上,由于量子力學疊加性的存在,某些已知的量子算法在處理問題時速度要快于傳統(tǒng)的通用計算機。
基本原理 播報
量子力學態(tài)疊加原理使得量子信息單元的狀態(tài)可以處于多種可能性的疊加狀態(tài),從而導(dǎo)致量子信息處理從效率上相比于經(jīng)典信息處理具有更大潛力。普通計算機中的2位寄存器在某一時間僅能存儲4個二進制數(shù)(00、01、10、11)中的一個,而量子計算機中的2位量子位(qubit)寄存器可同時存儲這四種狀態(tài)的疊加狀態(tài)。隨著量子比特數(shù)目的增加,對于n個量子比特而言,量子信息可以處于2種可能狀態(tài)的疊加,配合量子力學演化的并行性,可以展現(xiàn)比傳統(tǒng)計算機更快的處理速度。
量子位
量子位(qubit)是量子計算的理論基石。在常規(guī)計算機中,信息單元用二進制的 1 個位來表示,它不是處于“ 0” 態(tài)就是處于“ 1” 態(tài). 在二進制量子計算機中,信息單元稱為量子位,它除了處于“ 0” 態(tài)或“ 1” 態(tài)外,還可處于疊加態(tài)(superposed state)。
疊加態(tài)是“ 0” 態(tài)和“ 1” 態(tài)的任意線性疊加,它既可以是“ 0” 態(tài)又可以是“ 1” 態(tài),“ 0” 態(tài)和“ 1” 態(tài)各以一定的概率同時存在. 通過測量或與其它物體發(fā)生相互作用而呈現(xiàn)出“ 0” 態(tài)或 “ 1” 態(tài).任何兩態(tài)的量子系統(tǒng)都可用來實現(xiàn)量子位,例如氫原子中的電子的基態(tài)(ground state)和第 1 激發(fā)態(tài)(first excited state)、 質(zhì)子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、 圓偏振光的左旋和右旋等。
一個量子系統(tǒng)包含若干粒子,這些粒子按照量子力學的規(guī)律運動,稱此系統(tǒng)處于態(tài)空間的某種量子態(tài)。這里所說的態(tài)空間是指由多個本征態(tài)(eigenstate) (即基本的量子態(tài))所張成的矢量空間,基本量子態(tài)簡稱基本態(tài)(basic state)或基矢(basic vector) . 態(tài)空間可用Hilbert 空間(線性復(fù)向量空間)來表述,即Hilbert 空間可以表述量子系統(tǒng)的各種可能的量子態(tài).為了便于表示和運算,Dirac提出用符號|x〉 來表示量子態(tài),|x〉 是一個列向量,稱為ket ;它的共軛轉(zhuǎn)置(conjugate t ranspose) 用〈x|表示,〈x|是一個行向量,稱為bra.一個量子位的疊加態(tài)可用二維Hilbert 空間(即二維復(fù)向量空間)的單位向量來描述。
疊加原理
把量子考慮成磁場中的電子。電子的旋轉(zhuǎn)可能與磁場一致,稱為上旋轉(zhuǎn)狀態(tài),或者與磁場相反,稱為下旋狀態(tài)。如果我們能在消除外界影響的前提下,用一份能量脈沖能將下自旋態(tài)翻轉(zhuǎn)為上自旋態(tài);那么,我們用一半的能量脈沖,將會把下自旋狀態(tài)制備到一種下自旋與上自旋疊加的狀態(tài)上(處在每種狀態(tài)上的幾率為二分之一)。對于n個量子比特而言,它可以承載2的n次方個狀態(tài)的疊加狀態(tài)。而量子計算機的操作過程被稱為幺正演化,幺正演化將保證每種可能的狀態(tài)都以并行的方式演化。這意味著量子計算機如果有500個量子比特,則量子計算的每一步會對2500種可能性同時做出了操作。2500是一個可怕的數(shù),它比地球上已知的原子數(shù)還要多(這是真正的并行處理,當今的經(jīng)典計算機,所謂的并行處理器仍然是一次只做一件事情)。 [2]
行動計劃 播報
2016年歐盟宣布啟動11億美元的“量子旗艦”計劃;德國于2019年8月宣布了6.5億歐元的國家量子計劃;中美兩國也在量子科學和技術(shù)上投入數(shù)十億美元。這場競賽旨在建造出在某些任務(wù)上的表現(xiàn)優(yōu)于傳統(tǒng)計算機的量子計算機。2019年10月,谷歌宣布一款執(zhí)行特定計算任務(wù)的量子處理器已實現(xiàn)這種量子霸權(quán)。
2019年12月6日,俄羅斯副總理馬克西姆·阿基莫夫于索契舉行的技術(shù)論壇上提出國家量子行動計劃,擬5年內(nèi)投資約7.9億美元,打造一臺實用的量子計算機,并希望在實用量子技術(shù)領(lǐng)域趕上其他國家。 [3]
2022年7月20日,研究人員在《自然》雜志上發(fā)表論文指出,盡管只有一種單一的時間流,但該時段具有兩個時間維度的好處,存儲在該時段的信息比目前在量子計算機中使用的其他設(shè)置更能防止出錯。因此,這些信息可在不被篡改的情況下存在很長時間,這是量子計算可行性研究的一個重要里程碑。
概念提出
量子計算(quantum computation) 的概念最早由阿崗國家實驗室的P. Benioff于80年代初期提出,他提出二能階的量子系統(tǒng)可以用來仿真數(shù)字計算;稍后費曼也對這個問題產(chǎn)生興趣而著手研究,并在1981年于麻省理工學院舉行的First Conference on Physics of Computation中給了一場演講,勾勒出以量子現(xiàn)象實現(xiàn)計算的愿景。1985年,牛津大學的D. Deutsch提出量子圖靈機(quantum Turing machine)的概念,量子計算才開始具備了數(shù)學的基本型式。然而上述的量子計算研究多半局限于探討計算的物理本質(zhì),還停留在相當抽象的層次,尚未進一步跨入發(fā)展算法的階段。
中期發(fā)展
1994年,貝爾實驗室的應(yīng)用數(shù)學家P. Shor指出 ,相對于傳統(tǒng)電子計算器,利用量子計算可以在更短的時間內(nèi)將一個很大的整數(shù)分解成質(zhì)因子的乘積。這個結(jié)論開啟量子計算的一個新階段:有別于傳統(tǒng)計算法則的量子算法(quantum algorithm)確實有其實用性,絕非科學家口袋中的戲法。自此之后,新的量子算法陸續(xù)的被提出來,而物理學家接下來所面臨的重要的課題之一,就是如何去建造一部真正的量子計算器,來執(zhí)行這些量子算法。許多量子系統(tǒng)都曾被點名做為量子計算器的基礎(chǔ)架構(gòu),例如光子的偏振(photon polarization)、腔量子電動力學(cavity quantum electrodynamics,CQED)、離子阱(ion trap)以及核磁共振(nuclear magnetic resonance,NMR)等等。截止到2017年,考慮到系統(tǒng)的可擴展性和操控精度等因素,離子阱與超導(dǎo)系統(tǒng)走在了其它物理系統(tǒng)的前面。
2019年8月,中國量子計算研究獲重要進展:科學家領(lǐng)銜實現(xiàn)高性能單光子源。中科院院士、中國科學技術(shù)大學教授潘建偉與陸朝陽、霍永恒等人領(lǐng)銜,和多位國內(nèi)及德國、丹麥學者合作,在國際上首次提出一種新型理論方案,在窄帶和寬帶兩種微腔上成功實現(xiàn)了確定性偏振、高純度、高全同性和高效率的單光子源,為光學量子計算機超越經(jīng)典計算機奠定了重要的科學基礎(chǔ)。國際權(quán)威學術(shù)期刊《自然·光子學》發(fā)表了該成果,評價其“解決了一個長期存在的挑戰(zhàn)”。
2021年10月,中科院量子信息與量子科技創(chuàng)新研究院科研團隊在超導(dǎo)量子和光量子兩種系統(tǒng)的量子計算方面取得重要進展,使中國成為世界上唯一在兩種物理體系達到“量子計算優(yōu)越性”里程碑的國家。
2022年3月,量子計算技術(shù)創(chuàng)新中心在合肥建立。
發(fā)展前景
量子計算將有可能使計算機的計算能力大大超過今天的計算機,但仍然存在很多障礙。大規(guī)模量子計算所存在重要的問題是,如何長時間地保持足夠多的量子比特的量子相干性,同時又能夠在這個時間段之內(nèi)做出足夠多的具有超高精度的量子邏輯操作。
世界上第一臺商用量子計算機
D-Wave One量子處理器晶圓
加拿大量子計算公司D-Wave于2011年5月11日正式發(fā)布了全球第一款商用型量子計算機“D-Wave One”,量子電腦的夢想距離我們又近了一大步。D-Wave公司的口號就是——“Yes,you can have one.”。其實早在2007年初,D-Wave公司就展示了全球第一臺商用實用型量子計算機“Orion”(獵戶座),不過嚴格來說當時那套系統(tǒng)還算不上真正意義的量子計算機,只是能用一些量子力學方法解決問題的特殊用途機器。
通用任務(wù)方面還遠不是傳統(tǒng)硅處理器的對手,而且編程方面也需要重新學習。另外,為盡可能降低qubit的能級,需要利用低溫超導(dǎo)狀態(tài)下的鈮產(chǎn)生qubit,D-Wave 的工作溫度需保持在絕對零度附近(20 mK)。
量子計算將有可能使計算機的計算能力大大超過今天的計算機,但仍然存在很多障礙。大規(guī)模量子計算所存在的一個問題是,提高所需量子裝置的準確性有困難。
2017年1月,D-Wave公司推出D-Wave 2000Q,他們聲稱該系統(tǒng)由2000個qubit構(gòu)成,可以用于求解最優(yōu)化、網(wǎng)絡(luò)安全、機器學習、和采樣等問題。對于一些基準問題測試,如最優(yōu)化問題和基于機器學習的采樣問題,D-Wave 2000Q勝過當前高度專業(yè)化的算法1000到10000倍。
D-Wave One量子計算機系統(tǒng)與D-Wave公司創(chuàng)始人兼CTO Geordie Rose
中科大首次研制出非局域量子模擬器
中國科學技術(shù)大學的量子信息重點實驗室李傳鋒教授研究組首次研制出非局域量子模擬器,并且模擬了宇稱—時間(Parity-time, PT)世界中的超光速現(xiàn)象。
這一實驗充分展示了非局域量子模擬器在研究量子物理問題中的重要作用。
量子模擬器是解決特定問題的專用量子計算機,這一概念最早由費曼于1981年提出。費曼認為自然界本質(zhì)上是遵循量子力學的,只有用遵循量子力學的裝置,才能更好地模擬它,這個力學裝置就是量子模擬器。量子模擬器研究中,人們更多關(guān)注的是它的量子加速能力,通常情況下,一個量子模擬器所操控的量子比特數(shù)越多,它的運算能力就越強。 [
華為首次曝光量子計算成果
2018年10月12日,華為公布了在量子計算領(lǐng)域的最新進展:量子計算模擬器HiQ云服務(wù)平臺問世,平臺包括HiQ量子計算模擬器與基于模擬器開發(fā)的HiQ量子編程框架兩個部分,這是這家公司在量子計算基礎(chǔ)研究層面邁出的第一步。
百度推出百度量子平臺
2020年9月15日,“百度世界2020”大會在線上召開,百度研究院量子計算研究所所長段潤堯發(fā)布了百度量子平臺,展示了百度用量脈+量槳+量易伏賦能新基建、追逐“人人皆可量子”的愿景。他介紹,“百度全新發(fā)布國內(nèi)首個云原生量子計算平臺量易伏,并全面升級量子脈沖云計算服務(wù)系統(tǒng)量脈和量子機器學習開發(fā)工具集量槳,通過構(gòu)建以百度量子平臺為核心的量子生態(tài),開啟量子時代的大門。” 百度量子平臺提供了連接頂層解決方案和底層硬件基礎(chǔ)所需的大量軟件工具以及接口,百度希望這一平臺扮演量子計算時代操作系統(tǒng)的角色,開發(fā)者和合作伙伴可以通過這一平臺實現(xiàn)量子計算對行業(yè)的賦能。